The layers of mucus that protect sensitive tissue throughout the body have an undesirable side effect: They can also keep helpful medications away. To overcome this hurdle, researchers have found a way to coat nanoparticles with a chemical that helps them slip through this sticky barrier.
The layers of mucus that protect sensitive tissue throughout the body have an undesirable side effect: they can also keep helpful medications away. To overcome this hurdle, Johns Hopkins researchers have found a way to coat nanoparticles with a chemical that helps them slip through this sticky barrier.
During experiments with these coated particles, the researchers also discovered that mucus layers have much larger pores than previously thought, providing a doorway that should allow larger and longer-acting doses of medicine to reach the protected tissue.
The team’s findings were reported this week in the Early Online Edition of Proceedings of the National Academy of Sciences.
The discoveries are important because mucus layers, which trap and help remove pathogens and other foreign materials, can block the localized delivery of drugs to many parts of the body, including the lungs, eyes, digestive tract and female reproductive system. Because of these barriers, doctors often must prescribe pills or injections that send drugs through the entire body, an approach that can lead to unwanted side effects or doses that are too weak to provide effective treatment.
“Mucus barriers evolved to serve a helpful purpose: to keep things out,” said Justin Hanes, an associate professor of chemical and biomolecular engineering who supervised the research. “But if you want to deliver medicine in a microscopic particle, they can also keep the drugs from getting through. We’ve found a way to keep helpful nanoparticles from sticking to mucus, and we learned that the openings in the mucus ‘mesh’ are much larger than most people expected. These findings set the stage for a new generation of nanomedicines that can be delivered directly to the affected areas.”