Brain tumors appear to arise from cancer stem cells (CSCs) that live within microscopic protective “niches” formed by blood vessels in the brain; and disrupting these niches is a promising strategy for eliminating the tumors and preventing them from re-growing, according to results of a study by investigators at St. Jude Children’s Research Hospital. CSCs are cells that continually multiply, acting as the source of tumors.
“The finding that brain CSCs exist in protective vascular (blood vessel) niches helps explain the origin of brain tumors and suggests a new strategy for eliminating them,” said Richard Gilbertson, M.D., Ph.D., co-director of the Neurobiology and Brain Tumor Program at St. Jude. Gilbertson is senior author of a report on this work that appears in the January issue of Cancer Cell.
“Our data indicate that brain CSCs are nurtured by these vascular niches and that disrupting them blocks tumor growth by removing CSCs from tumors,” he said. “These niches might also protect CSCs from chemotherapy drugs and irradiation therapy. So our findings could explain why aggressive tumors rapidly produce new blood vessels and why brain tumors reappear following treatment.”
The St. Jude team first determined that CSCs are located in vascular niches by identifying cells carrying a protein called Nestin that marks stem cells (Nestin+ cells) in four types of brain cancer removed from patients: medulloblastoma, ependymoma, oligodendroglioma and glioblastoma. They found that tumors with the densest system of tiny blood vessels contained the greatest number of Nestin+ cells, and that Nestin+ cells are located next to blood vessels in brain tumors.
The investigators then examined thin sections of brain tumors and found that more than one-third of the Nestin+ cells next to blood vessels in the vascular niches had a mutation known to be linked to cancer, which suggested they were CSCs, Gilbertson said. About 30 percent of these cells were multiplying abnormally and rapidly, as expected for cancer cells.